MR microscopy of rat hippocampal slice cultures: a novel model for studying cellular processes and chronic perturbations to tissue microstructure.

نویسندگان

  • Timothy M Shepherd
  • Bjorn Scheffler
  • Michael A King
  • Greg J Stanisz
  • Dennis A Steindler
  • Stephen J Blackband
چکیده

Brain slices provide a useful nervous tissue model to investigate the relationships between magnetic resonance imaging (MRI) contrast mechanisms and tissue microstructure; yet, these acutely isolated tissues remain viable for only 10-12 h. To study slower biological processes, this work describes the first MRI microscopy characterization of organotypic rat hippocampal slice cultures that can be maintained for several weeks. Diffusion-weighted images of slice cultures acquired with a 14.1-T magnet demonstrated the laminar anatomy of the hippocampus with relatively high signal-to-noise ratios. Diffusion data analyzed using a two-compartment model with exchange indicated that cultured slices had a comparable microstructure to acute brain slices and to in vivo brain. Immunohistochemistry indicated that slice cultures tolerated the conditions required for MRI study well. MRI of cultured tissue slices is highly amenable to correlative microscopy techniques and offers great promise for future MRI investigations of pathological tissue reorganization, molecular imaging and stem cell therapies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Culturing Adult Rat Hippocampal Neurons with Long-Interval Changing Media

Background: Primary cultures of embryonic neurons have been used to introduce a model of neurons in physiological and pathological conditions. However, age-related cellular events limit this method as an optimal model in adult neurodegenerative diseases studies. Besides, short-interval changing media in previous cultures decreases the effectiveness of this model. As an example of this matter, w...

متن کامل

Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy.

Three-dimensional tissue cultures have been used as effective models for studying different diseases, including epilepsy. High-throughput, nondestructive techniques are essential for rapid assessment of disease-related processes, such as progressive cell death. An ultrahigh-resolution optical coherence microscopy (UHR-OCM) system with [Formula: see text] axial resolution and [Formula: see text]...

متن کامل

Toxic Effect of Colchicine on Hippocampal Cortical Area

Background and Objectives: Study of deleterious effect of neurotoxins on the animals' brain is a fascinating research plan. In this project, the damage effect of colchicine on the hippocampal cornu ammonis 1 (CA1) was examined by the studying the hippocampal tissue. Materials and Methods: Injections of colchicine (1-75 μg/rat, intra- hippocampal CA1) were performed in cannulated male Wistar rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2006